Abstract

In this paper, we present calculations of the hole transport properties of bulk zinc-blende and wurtzite phase GaN at field strengths at which impact ionization does not occur significantly. The calculations are made using an ensemble Monte Carlo simulator, including the full details of the band structure and a numerically determined phonon scattering rate based on an empirical pseudopotential method. Band intersection points—including band crossings and band mixings—are treated by carefully evaluating the overlap integral between the initial and possible final drift states. In this way, the hole trajectories in phase space can be accurately traced. It is found that the average hole energies are significantly lower than the corresponding electron energies for the field strengths examined. This result is most probably due to the drastic difference in curvature between the uppermost valence bands and the lowest conduction band. The relatively flat valence bands impede hole-heating, leading to low average hole energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.