Abstract

The ensemble Monte Carlo technique including the details of the first four conduction bands within the full Brillouin zone is used to calculate the basic electronic transport properties for both zincblende and wurtzite crystal phases of bulk gallium nitride. The band structure throughout the Brillouin zone is determined using the empirical pseudopotential method. Calculations of the electron steady-state drift velocity, average energy, valley occupancy and band occupancy in the range of electric fields up to 500 kV/cm are presented. It is found that the threshold electric field for intervalley transfer is greater and that the second conduction band is more readily occupied in wurtzite than in zincblende GaN over the range of electric fields examined here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call