Abstract

For the series of para-substituted triphenylamines, optimized geometries, HOMO and LUMO energy levels, ionization potentials Ip, reorganization energies for hole transport λ(+), and frontier orbital contours have been calculated by means of ab initio computations. Relationships between them and the Hammett parameter are presented. According to calculations, electron releasing substituents increase the HOMO and LUMO energies of TPA, while electron withdrawing ones decrease it. This behavior is reflected in subsequent decreasing and increasing of ionization potentials of substituted TPAs. Calculations show that there exists also a strong substituent effect on the reorganization energy λ(+), which is a dominating factor of hole mobility. It is concluded that proper tuning of the HOMO and LUMO levels (and, as a result, ionization potential, Ip) and reorganization energy λ(+) (consequently, hole mobility) of the triphenylamine can be done by alteration of the TPA electronic structure by an appropriate substitution. It is demonstrated that the proper adjustment of the HOMO levels of HTM facilitates the reduction of an energy barrier at the interface of ITO/HTL and HTL/EL and ensure the high hole injection and hole transport rate. On the other hand, appropriate adjustment of the LUMO level prevents an electron leak from the EL into the HTM layer. Results of these calculations can be useful in the process of designing new HTM materials of desired properties (high efficiency, stability, and durability).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call