Abstract

All long-duration spacecraft in low-earth-orbit are subject to high speed impacts by meteoroids and orbital debris. In the event of a perforation, the pressure wall of a dual-wall structure impacted by a high-speed particle can also experience cracking and petalling. If such cracking were to occur on-orbit, unstable crack growth could develop which could lead to an unzipping of the impacted spacecraft module. The analysis presented in this paper extends the applicability of a crack length and hole size model developed previously for a normally impacted spacecraft wall to the case of obliquely incident particles. Predictions of the oblique impact model are compared with experimental data and the predictions of empirical hole size and crack length models. Modifications to the model that are required to bring its predictions in closer agreement with the experimental results are then presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.