Abstract
Utilizing a six-band k.p valence band calculations that considered a strained perturbation Hamiltonian, uniaxial stress-induced valence band structure parameters for Ge such as band edge energy shift, split, and effective mass were quantitatively evaluated. Based on these valence band parameters, the dependence of hole mobility on uniaxial stress (direction, type, and magnitude) and hole transport direction was theoretical studied. The results show that the hole mobility had a strong dependence on the transport direction and uniaxial stress. The hole mobility enhancement can be found for all transport directions and uniaxial stess configurations, and the hole transport along the [110] direction under the uniaxial [110] compressive stress had the highest mobility compared to other transport directions and stress configurations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have