Abstract

An incremental updated Lagrangian elasto-plastic finite element method(FEM) was employed to analyze the hole-flanging with the ironing of circulate plates using a pre-determined smaller hole at the center of the two-ply sheet metals. An extended r min technique was employed such that each incremental step size can be determined not only by the yielding of an element Gaussian point, but also by the change under the boundary conditions of penetration, separation, and the alternation of the sliding-sticking state of friction along the tool-sheet interface. Two-ply sheet metals are generally composed of metals that have different mechanical properties. Thus, the forming process of these materials is complicated. A number of experiments and simulations were performed using a conical punch with a cone angle of 45°. The experimental results were compared with FEM-simulated results. It is found that using the elasto-plastic FEM can effectively predict the generation process of the deformed shape until unloading. The calculated sheet geometries and the relationship between punch load and punch travel are in good agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.