Abstract
Low-resistivity p-type GaN films, which were obtained by N2-ambient thermal annealing or low-energy electron-beam irradiation (LEEBI) treatment, showed a resistivity as high as 1×106 Ω·cm after NH3-ambient thermal annealing at temperatures above 600°C. In the case of N2-ambient thermal annealing at temperatures between room temperature and 1000°C, the low-resistivity p-type GaN films showed no change in resistivity, which was almost constant between 2 Ω·cm and 8 Ω·cm. These results indicate that atomic hydrogen produced by NH3 dissociation at temperatures above 400°C is related to the hole compensation mechanism. A hydrogenation process whereby acceptor-H neutral complexes are formed in p-type GaN films was proposed. The formation of acceptor-H neutral complexes causes hole compensation, and deep-level and weak blue emissions in photoluminescence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.