Abstract

Summary One of the most critical issues in the oil and gas industry is the dewatering of the pipelines used for natural gas transportation, and foam injection seems to be a prominent solution. This work has two goals: The main one concerns the development of an optical tool to measure the liquid holdup in foamy flows and perform the flow regime characterization, whereas the secondary goal is to quantify the effectiveness of surfactant injection in reducing the liquid loading. In this paper, we present the results of an experimental campaign aimed at the characterization of gas-liquid-foam flows in a horizontal pipe. Initially, liquid loading measurements for gas and liquid superficial velocities, ranging from 0.41 to 2.30 m/s and from 0.03 to 0.06 m/s, respectively, were performed by means of a specifically developed optical method. For each liquid superficial velocity, the minimum liquid holdup was found to lie in the proximity of the boundary between plug and stratified flow regime, with a superficial gas velocity between 0.44 and 0.90 m/s. Hence, the plug flow region corresponds to the best operating condition to perform the pipeline dewatering procedure. Moreover, the drift-flux model usually adopted for ordinary two-phase gas-liquid flows seems to fit well with the measured values of void fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.