Abstract
Flexible epidermal electrodes hold substantial promise in realizing human electrophysiological information collections. Conventional electrodes exhibit certain limitations, including the requirement of skin pretreatment, reliance on external object-assisted fixation, and a propensity of dehydration, which severely hinder their applications in medical diagnosis. To tackle those issues, we developed a hydrogel electrode with both transcutaneous stimulation and neural signal acquisition functions. The electrode consists of a composite conductive layer (CCL) and adhesive conductive hydrogel (ACH). The CCL is designed as a laminated structure with high conductivity and charge storage capacity (CSC). Based on the optimization of Hoffmeister effect, the ACH demonstrates excellent electrical (resistivity of 3.56 Ω·m), mechanical (tensile limit of 1,650%), and adhesion properties (peeling energy of 0.28 J). The utilization of ACH as electrode/skin interface can reduce skin contact impedance and noise interference and enhance the CSC and charge injection capacity of electrodes. As a proof of concept, peripheral nerve conduction studies were performed on human volunteers to evaluate the as-fabricated hydrogel electrodes. Compared with the commercial electrodes, our hydrogel electrodes achieved better signal continuity and lower distortion, higher signal-to-noise ratio (~35 dB), and lower stimulation voltages (up to 27% lower), which can improve the safety and comfort of nerve conduction studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.