Abstract

We outline a Hodge-de Rham theory of k-forms (for k = 0,1,2) on two fractals: the Sierpinski Carpet (SC) and a new fractal that we call the Magic Carpet (MC), obtained by a construction similar to that of SC modified by sewing up the edges whenever a square is removed. Our method is to approximate the fractals by a sequence of graphs, use a standard Hodge-de Rham theory on each graph, and then pass to the limit. While we are not able to prove the existence of the limits, we give overwhelming experimental evidence of their existence, and we compute approximations to basic objects of the theory, such as eigenvalues and eigenforms of the Laplacian in each dimension, and harmonic 1-forms dual to generators of 1-dimensional homology cycles. On MC we observe a Poincare type duality between the Laplacian on 0-forms and 2-forms. On the other hand, on SC the Laplacian on 2-forms appears to be an operator with continuous (as opposed to discrete) spectrum. 2010 Mathematics Subject Classification. Primary: 28A80

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.