Abstract
We study several variants of the classical Sierpinski carpet (SC) fractal. The main examples we call infinite magic carpets (IMC), obtained by taking an infinite blowup of a discrete graph approximation to SC and identifying edges using torus, Klein bottle or projective plane type identifications. We use both theoretical and experimental methods. We prove estimates for the size of metric balls that are close to optimal. We obtain numerical approximations to the spectrum of the graph Laplacian on IMC and to solutions of the associated differential equations: Laplace equation, heat equation and wave equation. We present evidence that the random walk on IMC is transient, and that the full spectral resolution of the Laplacian on IMC involves only continuous spectrum. This paper is a contribution to a general program of eliminating unwanted boundaries in the theory of analysis on fractals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Fractal Geometry, Mathematics of Fractals and Related Topics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.