Abstract

Horava gravity has been constructed so as to exhibit anisotropic scaling in the ultraviolet, as this renders the theory power-counting renormalizable. However, when coupled to matter, the theory has been shown to suffer from quadratic divergences. A way to cure these divergences is to add terms with both time and space derivatives. We consider this extended version of the theory in detail. We perform a perturbative analysis that includes all modes, determine the propagators and discuss how including mixed-derivative terms affects them. We also consider the Lifshitz scalar with mixed-derivative terms as a toy model for power counting arguments and discuss the influence of such terms on renormalizability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call