Abstract

Mammalian heterogeneous nuclear ribonucleoproteins M (hnRNPM) is a critical splicing regulatory protein that has been reported to negatively regulate the RLR signaling pathway by impairing the binding of RIG-I and MDA5 to viral RNA. To explore the role of hnRNPM in the antiviral innate immune response in teleost fish, the hnRNPM homologue of triploid fish (3nhnRNPM) has been cloned and identified in this paper. The CDS of 3nhnRNPM gene is composed of 2016 nucleotides and encodes 671 amino acids. 3nhnRNPM migrated around 71 kDa in immunoblotting assay and was mainly detected in the nucleus in nucleo-cytoplasmic separation assay and immunofluorescent staining test. When 3nhnRNPM and 3nIRF7 were co-expressed in EPC cells, 3nhnRNPM significantly reduced the 3nIRF7-induced interferon (IFN) promoter transcription. Correspondingly, the mRNA levels of the SVCV-M, -N, -P, and -G genes were noteworthily enhanced, but the transcription levels of epcIFNφ1, epcMx1, epcPKR, and epcISG15 were dramatically decreased. Additionally, the knockdown of 3nhnRNPM resulted in restricted SVCV replication and enhanced host cell antiviral activity. Furthermore, the association between 3nhnRNPM and 3nIRF7 has been identified by the co-immunoprecipitation assay. In addition, we found that 3nIRF7 was detained in the nucleus when co-expressed with 3nhnRNPM. To sum up, our data supported the conclusion that 3nhnRNPM suppressed 3nIRF7-mediated IFN signaling in the antiviral innate immunity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call