Abstract
The mechanism underlying the upregulation of FLOT2 in tumors, especially its regulatory mechanism at the RNA level, remains unclear. The purpose of this study is to investigate the regulatory mechanism of FLOT2 upregulation in tumors, particularly at the RNA level, and its role in nasopharyngeal carcinoma (NPC) progression. We identified the role of HNRNPH1 in maintaining FLOT2 mRNA stability and its dependency on the m6A modification. We explored the interaction between HNRNPH1 and METTL14, a key enzyme in m6A modification, and its impact on FLOT2 mRNA stability. We also assessed the expression levels of HNRNPH1 and METTL14 in NPC and their correlation with patient malignancy and prognosis. Experimental approaches included in vitro and in vivo assays to study the effects of HNRNPH1 knockdown on NPC cell proliferation and invasion. HNRNPH1 is highly expressed in NPC and stabilizes FLOT2 mRNA through an m6A-dependent mechanism. HNRNPH1 interacts with METTL14 to prevent its degradation by STUB1 E3 ligases, leading to increased m6A modification of FLOT2 by METTL14. Additionally, IGF2BP3 was shown to recognize the m6A modification on FLOT2 mRNA, further stabilizing it. High expression of HNRNPH1 and METTL14 were observed in NPC and were positively associated with increased malignancy and poorer patient outcomes. HNRNPH1 knockdown significantly reduced the proliferation and invasive capabilities of NPC cells. Restoration of METTL14 in HNRNPH1-depleted cells could rescue FLOT2 expression and the malignant phenotype, but this effect was negated by the knockdown of FLOT2. Our study elucidates a novel mechanism where HNRNPH1 and METTL14 work together to maintain the stability of FLOT2 mRNA, thereby promoting NPC progression. Targeting this pathway presents a promising therapeutic strategy for the treatment of NPC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have