Abstract

Recent development of strategies using multiple sequence alignments (MSA) or profiles to detect remote homologies between proteins has led to a significant increase in the number of proteins whose structures can be generated by comparative modeling methods. However, prediction of the optimal alignment between these highly divergent homologous proteins remains a difficult issue. We present a tool based on a generalized Viterbi algorithm that generates optimal and sub-optimal alignments between a sequence and a Hidden Markov Model. The tool is implemented as a new function within the HMMER package called hmmkalign.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.