Abstract

Multiple sequence alignment is an important problem in computational molecular biology. Dynamic programming for optimal multiple alignment requires too much time to be practical. Although many algorithms for suboptimal alignment have been suggested, no “performance guarantees” algorithms have been known until recently. A computationally efficient approximation multiple alignment algorithm with guaranteed error bounds equal to the normalized communication cost of a corresponding graph is given in this paper. Recently, Altschul and Lipman [SIAM J. Appl. Math., 49 (1989), pp. 197–209] used suboptimal alignments for reducing the computational complexity of the optimal alignment algorithm. This paper develops the Altschul–Lipman approach and demonstrates that bounds for optimal multiple alignment of k sequences can be derived from a solution of the maximum weighted matching problem in a k-vertex graph. Fast maximum matching algorithms allow efficient implementation of dynamic bounds for the multiple alignment problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.