Abstract

Dual supply voltage design is widely accepted as an effective way to reduce the power consumption of CMOS circuits. In this paper, we propose a comprehensive design framework that includes dual- scheduling, dual- allocation, controller synthesis as well as layout generation. In particular, we address a problem of high-level synthesis with objective of minimizing power consumption of storage units and multiplexers using dual- ; this is made possible by utilizing timing slack that is left in the data-path after operation scheduling. We use integer linear programming (ILP) and also provide heuristic algorithms to solve the dual- register and connection allocation. The physical layout of dual-circuits has to separate power rails of and cells from each other. We propose a voltage island based placement algorithm to relieve this restriction and allow more flexibility of placement. In experiments on benchmark designs implemented in 1.08 V (with Vddl of 0.8 V) 65-nm CMOS technology, both switching and leakage power are reduced by 20% on average, respectively, compared to data-path with dual-Vdd applied to functional units alone. Detailed analysis of area and wirelength is performed to assess feasibility of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call