Abstract

The development of de novo donor-specific antibodies (dnDSA) and antibody-mediated rejection (AMR) remains a barrier to long-term graft and patient survival. Most dnDSA are directed against mismatched donor HLA-DQ antigens. Here, we describe a novel algorithm, which we have termed categorical amino acid mismatched epitope, to evaluate HLA-DQ mismatches. In this algorithm, amino acid residues of HLA-DQ protein were categorized into 4 groups based on their chemical characteristics. The likelihood of categorically mismatched peptides presented by the recipient's HLA-DRB1 was expressed as a normalized value, %Rank score. Categorical HLA-DQ mismatches were analyzed in 386 heart transplant recipients who were mismatched with their donors at the HLA-DQB1 locus. We found that the presence of DQB1 mismatches with %Rank score ≤1 was associated with the development of dnDSA (P = 0.002). Furthermore, dnDSA increased the risk of AMR only in recipients who had DQ mismatches with %Rank score ≤1 (hazard ratio = 5.8), but the freedom from AMR was comparable between recipients with dnDSA and those without dnDSA if %Rank scores of DQ mismatching were >1. These results suggest that HLA-DQ mismatches evaluated by the categorical amino acid mismatched epitope algorithm can stratify the risk of development of dnDSA and AMR in heart transplant recipients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.