Abstract

Donor-specific human leukocyte antigen (HLA) class II antibodies (HLA-II Abs) combined with allogeneic endothelial cells (ECs) mediate high-risk rejection in kidney transplant patients. Macrophage accumulation is a significant histological feature of antibody-mediated rejection (AMR) in kidney transplant patients. Here, we further investigated the effect of HLA-II Abs on macrophage phenotypes to provide theoretical basis for clinical treatment of AMR. We prepared an experimental model containing HLA-II Ab-stimulated microvascular ECs and peripheral blood mononuclear cells (PBMCs) co-culture and explored the potential relationship of HLA-II Ab, ECs activation, and macrophage differentiation. Immune phenotype of macrophage subsets was analyzed and quantified by flow cytometry. HLA-II Ab activation of ECs induces M2 macrophage differentiation signal pathways which were investigated by qPCR and western blotting. The stimulation of ECs by F(ab')2 fragment of HLA-II Abs led to phosphorylation of PI3K, Akt, and mTOR, which mediated IL-10, ICAM-1, VCAM-1 secretion. The enhanced ICAM-1 and IL-10 promoted the migration of PBMCs and their differentiation into CD68+ and CD163+ (M2-type) macrophages, respectively, but not CD86+ macrophages. These findings revealed the PI3K/Akt/mTOR signal pathways activated by HLA-II Abs in ECs and the immune regulation ability of HLA-II Abs to induce PBMC differentiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call