Abstract

HIV-1 associated neurocognitive deficits are increasing in prevalence, although the neuronal basis for these deficits is unclear. HIV-1 Tg rats constitutively express 7 of 9 HIV-associated proteins, and may be useful for studying the neuropathological substrates of HIV-1 associated neurocognitive disorders (HAND). In this study, adult female HIV-1 Tg rats and F344 control rats had similar growth rates, estrous cyclicity and startle reflex inhibition to a visual prepulse stimulus. Medium spiny neurons (MSNs) in the nucleus accumbens (NAcc) were ballistically-labeled utilizing the indocarbocyanine dye DiI. The branching complexity of MSNs in the NAcc was significantly decreased in HIV-1 Tg rats, relative to controls; moreover, the shorter length and decreased volume of dendritic spines, but unchanged head diameter, in HIV-1 Tg rats suggested a reduction of longer spines and an increase in shorter, less projected spines, indicating a population shift to a more immature spine phenotype. Collectively, these results from HIV-1 Tg female rats indicated significant synaptodendritic alterations of MSNs in the NAcc occur as a consequence of chronic, low-level, exposure to HIV-1 associated proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.