Abstract

Each of the two stem-loop structures in the HIV-2 TAR (TAR-2) RNA element contains a dinucleotide bulge that specifiesa binding site in vitro for the HIV-2 Tat transactivator protein. A TAR-2 RNA with both bulges deleted is very weakly transactivated in vivo by the HIV-2 Tat protein. To gain insight into general features of Tat protein:TAR RNA interactions, we have analyzed the significance of the dinucleotide bulges in TAR-2 RNA for in vitro binding and in vivo transactivation by the related HIV-1 Tat protein. The HIV-1 Tat protein has been shown previously to bind efficiently to wild-type TAR-2 RNA and fully transactivates the HIV-2 LTR. We found that the 5′ proximal bulge and the 3′ distal bulge appear to specify a high and low affinity binding site in vitro, respectively, for the HIV-1 Tat protein. Wild-type TAR-2 RNA was found to be able to bind HIV-1 Tat proteins simultaneously at each bulge binding site in vitro. A TAR-2 RNA with both bulges deleted was greatly defective for in vitro binding by the HIV-1 Tat protein. Surprisingly, the TAR-2 RNA with both bulges deleted was efficiently transactivated in vivo by the HIV-1 Tat protein, indicating that the HIV-1 Tat protein (but not HIV-2 Tat protein) is able to strongly activate transcription of a TAR RNA with no apparent bulge binding site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.