Abstract

BackgroundActivation of RNA-dependent stress kinase PKR, especially by viral double-stranded RNA, induces eukaryotic initiation factor 2 α-chain (eIF2α) phosphorylation, attenuating thereby translation. We report that this RNA-mediated negative control mechanism, considered a cornerstone of the cell’s antiviral response, positively regulates splicing of a viral mRNA.ResultsExcision of the large human immunodeficiency virus (HIV) rev/tat intron depends strictly on activation of PKR by the viral RNA and on eIF2α phosphorylation. Rev/tat mRNA splicing was blocked by viral PKR antagonists Vaccinia E3L and Ebola VP35, as well as by a trans-dominant negative mutant of PKR, yet enhanced by overexpressing PKR. Expression of non-phosphorylatable mutant eIF2αS51A, but not of wild type eIF2α, abrogated efficient splicing of rev/tat mRNA. By contrast, expression of eIF2αS51D, a phosphomimetic mutant of eIF2α, left rev/tat mRNA splicing intact. Unlike eIF2αS51A, eIF2αS51D does not inhibit eIF2α phosphorylation by activated PKR. All HIV mRNA species contain terminal trans-activation response (TAR) stem-loop sequences that potentially could activate PKR, yet even upon TAR deletion, HIV mRNA production remained sensitive to inhibitors of PKR activation. Bioinformatic and mutational analyses revealed a compact RNA pseudoknot upstream of 3′-terminal TAR that promotes splicing by activating PKR. Supporting its essential role in control of splicing, this pseudoknot is conserved among diverse HIV and nonhuman primate SIVcpz isolates. The pseudoknot and 3′-terminal TAR collaborate in mediating PKR-regulated splicing of rev/tat intron, the pseudoknot being dominant.ConclusionsOur results on HIV provide the first example of a virus co-opting activation of PKR by its RNA, a cellular antiviral mechanism, to promote splicing. They raise the question whether other viruses may use local activation of host kinase PKR through RNA elements within their genome to achieve efficient splicing of their mRNA. Our experiments reveal an indispensable role for eIF2α phosphorylation in HIV rev/tat mRNA splicing that accounts for the need for PKR activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.