Abstract

BackgroundWe have shown that HIV-1 Tat interaction with MAP2K3, MAP2K6, and IRF7 promoters is key to IFN-stimulated genes (ISG) activation in immature dendritic cells and macrophages.ResultsWe evaluated how Tat alleles and mutants differ in cellular gene modulation of immature dendritic cells and monocyte-derived macrophages and what similarities this modulation has with that induced by interferons. The tested alleles and mutants modulated to different degrees ISG, without concomitant induction of interferons. The first exon TatSF21-72 and the minimal transactivator TatSF21-58, all modulated genes to a significantly greater extent than full-length wild type, two-exon Tat, indicating that Tat second exon is critical in reducing the innate response triggered by HIV-1 in these cells. Mutants with reduced LTR transactivation had a substantially reduced effect on host gene expression modulation than wild type TatSF2. However, the more potent LTR transactivator TatSF2A58T modulated ISG expression to a lower degree compared to TatSF2. A cellular gene modulation similar to that induced by Tat and Tat mutants in immature dendritic cells could be observed in monocyte-derived macrophages, with the most significant pathways affected by Tat being the same in both cell types. Tat expression in cells deleted of the type I IFN locus or receptor resulted in a gene modulation pattern similar to that induced in primary immature dendritic cells and monocyte-derived macrophages, excluding the involvement of type I IFNs in Tat-mediated gene modulation. ISG activation depends on Tat interaction with MAP2K3, MAP2K6, and IRF7 promoters and a single exon Tat protein more strongly modulated the luciferase activity mediated by MAP2K3, MAP2K6, and IRF7 promoter sequences located 5′ of the RNA start site than the wild type two-exon Tat, while a cysteine and lysine Tat mutants, reduced in LTR transactivation, had negligible effects on these promoters. Chemical inhibition of CDK9 or Sp1 decreased Tat activation of MAP2K3-, MAP2K6-, and IRF7-mediated luciferase transcription.ConclusionsTaken together, these data indicate that the second exon of Tat is critical to the containment of the innate response stimulated by Tat in antigen presenting cells and support a role for Tat in stimulating cellular transcription via its interaction with transcription factors present at promoters.

Highlights

  • We have shown that Human immunodeficiency virus type 1 (HIV-1) Tat interaction with MAP2K3, MAP2K6, and IRF7 promoters is key to IFN-stimulated genes (ISG) activation in immature dendritic cells and macrophages

  • To investigate which domains of Tat are critical to the host-pathogen interactions that are Tat-dependent during HIV infection, we evaluated a variety of Tat-mutants and found that in antigen presenting cells (APCs) as Immature dendritic cells (iDC) and Monocyte-derived macrophages (MDM), the second exon of Tat reduces innate immune responses that are maximal when a single exon Tat is expressed

  • Our previous finding indicated that HIV Tat can affect the gene expression of iDC and induce expression of some of the ISG [23] via interaction with MAP2K3 and MAP2K6, and with IRF7 [27]

Read more

Summary

Introduction

We have shown that HIV-1 Tat interaction with MAP2K3, MAP2K6, and IRF7 promoters is key to IFN-stimulated genes (ISG) activation in immature dendritic cells and macrophages. Tat is among the first genes expressed during HIV-1 infection and functions as a transcription elongation factor for viral gene expression [1,2,3,4]. Deletion of the second exon, which can vary in size, does not substantially affect HIV-1 LTR transactivation in transfection assays but leads to reduce viral replication and activation of NF-kB [9]. Two domains in this exon, (RGD and ESKKKVE), are highly conserved between human and other primate lentiviruses, but their significance is not fully understood. Findings from HIV-2 and SIV Tat suggest that this exon contributes to optimal transactivation and to chronic SIV replication in vivo [10,11,12]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.