Abstract
Hit screening, which involves the identification of compounds or targets capable of modulating disease-relevant processes, is an important step in drug discovery. Some assays, such as image-based high-content screenings, produce complex multivariate readouts. To fully exploit the richness of such data, advanced analytical methods that go beyond the conventional univariate approaches should be employed. In this work, we tackle the problem of hit identification in multivariate assays. As with univariate assays, a hit from a multivariate assay can be defined as a candidate that yields an assay value sufficiently far away in distance from the mean or central value of inactives. Viewed another way, a hit is an outlier from the distribution of inactives. A method was developed for identifying multivariate hit in high-dimensional data sets based on principal components and robust Mahalanobis distance (the multivariate analogue to the Z- or T-statistic). The proposed method, termed mROUT (multivariate robust outlier detection), demonstrates superior performance over other techniques in the literature in terms of maintaining Type I error, false discovery rate and true discovery rate in simulation studies. The performance of mROUT is also illustrated on a CRISPR knockout data set from in-house phenotypic screening programme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.