Abstract
Glioblastoma multiforme (GBM) is a highly-aggressive, dreadful disease with poor prognosis and disappointing clinical success. There is an unmet medical need of molecularly-targeted therapeutics for GBM treatment. In the present work, a series of novel 2-phenyl-substituted 4-amino-6,7-dihydro-5H-cyclopenta[d]pyrimidines was designed, synthesized, purified, characterized, and evaluated for cytotoxicity against glioblastoma cell line U87-MG. The design process (virtual library enumeration around the core, physicochemicaland molecular property prediction/calculation of the designs, filtering the undesirable ones, and the diversity analyses of the lead-like designs), was carefully curated so as to obtain a set of structurally-diverse, novel molecules (total 20), with a particular focus on the relatively unexplored core structure, 6,7-dihydro-5H-cyclopenta[d]pyrimidine. The preliminary screening was done using MTT assay at 10 and 100 μM concentrations of the title compounds F1 -F20 and positive control cisplatin, which yielded six hits (% inhibition at 10 μM: ~50%)-F2 , F3 , F5 , F7 , F15 , and F20 , which were taken up for IC50 determination. The top hits F2 and F7 (IC50 < 10 μM) were further used for computational studies such as target prediction, followed by their molecular docking in the binding sites of the top-3 predicted targets (epidermal growth factor receptorkinase domain, cyclin-dependent kinase 2 [CDK2])/cyclin E, and anaplastic lymphoma kinase [ALK]). The docking pose analyses revealed interesting trends. The relatively planar core structure, presence of favorable hinge-binding substructures, basic groups, all added up, and culminated in appreciable cytotoxicity against GBM cell line.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have