Abstract

• This paper proposes an approach based on ES-MDA coupled with ConvBiGRU-VAE. • ConvBiGRU-VAE is used to generate uncertain parameters. • The proposed approach is validated on PUNQ-S3 and Volve reservoir models. • ConvBiGRU-VAE gave overall enhanced performance in terms of production prediction. This paper proposes a novel approach based on deep learning to improve oil reservoirs' history matching problem. Deep autoencoders are widely used to solve the oil industry problems. However, as the input data increases, the autoencoder parameters increase exponentially. Our model is based on a convolutional variational autoencoder using AlexNet and bi-directional gated recurrent units. It parameterizes large-scale oilfield reservoirs. The proposed model is integrated into an ensemble smoother with multiple data assimilation to perform history matching. The proposed approach is validated on two reservoir models: PUNQ-S3 and Volve field. The root mean squared error, R 2 , and mean absolute error are calculated to verify the effectiveness of the proposed approach. The results show that the proposed model can effectively study the complex geological features of oil fields and be used in expert systems for reservoir modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.