Abstract

The Ensemble Kalman Filter (EnKF) has been successfully applied in petroleum engineering during the past few years to constrain reservoir models to production or seismic data. This sequential assimilation method provides a set of updated static variables (porosity, permeability) and dynamic variables (pressure, saturation) at each assimilation time. However, several limitations can be pointed out. In particular, the method does not prevent petrophysical realizations from departing from prior information. In addition, petrophysical properties can reach extreme (non-physical) values. In this work, we propose to combine the EnKF with two parameterization methods designed to preserve second-order statistical properties: pilot points and gradual deformation. The aim is to prevent the departure of the constrained petrophysical property distributions from prior information. Over/under estimations should also be avoided. The two algorithms are applied to a synthetic case. Several parameter configurations are investigated in order to identify solutions improving the performance of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.