Abstract

Abstract During history match reservoir models are calibrated against production data to improve forecasts reliability. Often, the calibration ends up with a handful of matched models, sometime achieved without preserving the prior geological interpretation. This makes the outcome of many history matching projects unsuitable for a probabilistic approach to production forecast, then motivating the quest of methodologies casting history match in a stochastic framework. The Ensemble Kalman Filter (EnKF) has gained popularity as Monte-Carlo based methodology for history matching and real time updates of reservoir models. With EnKF an ensemble of models is updated whenever production data are available. The initial ensemble is generated according to the prior model, while the sequential updates lead to a sampling of the posterior probability function. This work is one of the first to successfully use EnKF to history match a real field reservoir model. It is, to our knowledge, the first paper showing how the EnKF can be used to evaluate the uncertainty in the production forecast for a given development plan for a real field model. The field at hand was an on-shore saturated oil reservoir. Porosity distribution was one of the main uncertainties in the model, while permeability was considered a porosity function. According to the geological knowledge, the prior uncertainty was modeled using Sequential Gaussian Simulation and ensembles of porosity realizations were generated. Initial sensitivities indicated that conditioning porosity to available well data gives superior results in the history matching phase. Next, to achieve a compromise between accuracy and computational efficiency, the impact of the size of the ensemble on history matching, porosity distribution and uncertainty assessment was investigated. In the different ensembles the reduction of porosity uncertainty due to production data was noticed. Moreover, EnKF narrowed the production forecast confidence intervals with respect to estimate based on prior distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call