Abstract
European settlement of New England brought about a novel disturbance regime that impacted rivers and estuaries through overfishing, deforestation, dams, and water pollution. The negative consequences of these activities intensified with industrialization in the 19th and 20th centuries, often resulting in ecosystem degradation. Since environmental legislation was implemented in the 1970s, improvement in water quality has been tangible and widespread; however, ecological recovery can require substantial amounts of time and may never be complete. To document the natural baseline conditions and investigate the recovery of a severely degraded river-estuary complex in mid-coast Maine, we examined diatoms, pollen, total organic carbon, total nitrogen, stable isotopes, total phosphorus, biogenic silica, and trace metals in intertidal sediments and established a chronology with 14C, 210Pb, and indicator pollen horizons. Both climate variability and human effects were evident in the sedimentary record of Merrymeeting Bay, the freshwater tidal portion of the Kennebec estuary. Natural climate variability was apparent in an episode of high sedimentation and altered diatom abundance during the 12th and 13th centuries and in changing pollen abundances between the 16th and 19th centuries, indicative of regional cooling. During the 18th century, colonial land clearance began an era of high sedimentation and eutrophication that strongly intensified with industrialization during the late 19th and 20th centuries. Improvements in water quality over the past 30 years in response to environmental regulation had little effect on ecosystem recovery as represented by the sedimentary record. Diatom composition and productivity and high fluxes of organic C, total P, and biogenic Si in recent sediments indicate that rates of nutrient loading remain high. These environmental proxies imply that aquatic productivity in Merrymeeting Bay was originally nutrient limited and water clarity high, relative to today. Further recovery may require more stringent regulation of nutrient inputs from industrial and municipal point sources. This historical study can contribute to public debate about the environmental management of this unusual river-estuary complex by describing its long-term natural baseline, thereby illustrating the upper limit of its potential for recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.