Abstract

Mohs micrographic surgery (MMS) is a precise oncological technique where layers of tissue are resected and examined with intraoperative histopathology to minimize the removal of normal tissue while completely excising the cancer. To achieve intraoperative pathology, the tissue is frozen, sectioned and stained over a 20- to 60-minute period, then analyzed by the MMS surgeon. Surgery is continued one layer at a time until no cancerous cells remain, meaning MMS can take several hours to complete. Ideally, it would be desirable to circumvent or augment frozen sectioning methods and directly visualize subcellular morphology on the unprocessed excised tissues. Employing photoacoustic remote sensing (PARS) microscopy, we present a non-contact label-free reflection-mode method of performing such visualizations in frozen sections of human skin. PARS leverages endogenous optical absorption contrast within cell nuclei to provide visualizations reminiscent of histochemical staining techniques. Presented here, is the first true one to one comparison between PARS microscopy and standard histopathological imaging in human tissues. We demonstrate the ability of PARS microscopy to provide large grossing scans (>1 cm2, sufficient to visualize entire MMS sections) and regional scans with subcellular lateral resolution (300 nm).

Highlights

  • Mohs micrographic surgery (MMS) is the gold standard precision surgical technique for treating contiguous invading skin cancers in cosmetically and functionally important areas [1]

  • The thin samples used in this study, do not provide a depth resolvable phantom since PARS signal is generated over the entire thickness with each excitation

  • The lateral optical resolution was determined from the full width half maximum (FWHM), of imaging the 200 nm nanoparticles

Read more

Summary

Introduction

Mohs micrographic surgery (MMS) is the gold standard precision surgical technique for treating contiguous invading skin cancers in cosmetically and functionally important areas [1]. MMS excision of nonmelanoma skin cancers (NMSC) represents one of the most common procedures in the United States. Around 25% of the 3.5 million NMSC cases diagnosed each year are treated with this procedure [2,3]. In recent years NMSC incidence has risen dramatically, straining the global capacity to provide MMS [2]. For the two most common NMSCs, basal cell carcinomas (BCC) and squamous cell carcinomas (SCC), MMS achieves a five-year cure rate of nearly 99% [4,5]. For high risk nonmelanoma lesions, MMS achieves higher cure rates than wide local excision [6,7,8]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.