Abstract

The computer-aided quantitative analysis for histopathological images has attracted considerable attention. The stain decomposition on histopathological images is usually recommended to address the issue of co-localization or aliasing of tissue substances. Although the convolutional neural networks (CNN) is a popular deep learning algorithm for various tasks on histopathological image analysis, it is only directly performed on histopathological images without considering stain decomposition. The bilinear CNN (BCNN) is a new CNN model for fine-grained classification. BCNN consists of two CNNs, whose convolutional-layer outputs are multiplied with outer product at each spatial location. In this work, we propose a novel BCNN-based method for classification of histopathological images, which first decomposes histopathological images into hematoxylin and eosin stain components, and then perform BCNN on the decomposed images to fuse and improve the feature representation performance. The experimental results on the colorectal cancer histopathological image dataset with eight classes indicate that the proposed BCNN-based algorithm is superior to the traditional CNN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call