Abstract

Inactivation of the X chromosome occurs in female somatic cells and in male meiosis. In both cases, the inactive X chromosome undergoes changes in histone modifications including deacetylation of core histone proteins and enrichment with histone H3 lysine 9 (H3-K9) dimethylation. In this study we show that while the inactive X in female somatic cells is largely devoid of H3-K4 dimethylation, the inactive X in male meiosis is enriched with this modification. However, the inactive X chromosome in female somatic cells and the inactive X and Y in male meiosis are devoid of H3-K4 trimethylation. Further, trimethylation of H3-K4 is present at discrete regions along most of the autosomes, while H3-K4 dimethylation shows a more homogenous staining. Also, the Y chromosome is largely devoid of H3-K4 di- and trimethylation in somatic cells of both humans and mice, however, the Y chromosome is enriched with H3-K4 di- but not trimethylation throughout spermatogenesis. Our results provide insights into the differences between female somatic cells and male germ cells in inactivating the X chromosome, and suggest that trimethylation, and not dimethylation, of H3-K4 is a more robust indicator of the active regions of the genome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.