Abstract
Histone deacetylase (HDAC) inhibitors have been shown to be potent inducers of growth arrest, differentiation, and/or apoptotic cell death of transformed cells in vitro and in vivo. One class of HDAC inhibitors, hydroxamic acid-based hybrid polar compounds (HPCs), induce differentiation at micromolar or lower concentrations. Studies (x-ray crystallographic) showed that the catalytic site of HDAC has a tubular structure with a zinc atom at its base and that these HDAC inhibitors, such as suberoylanilide hydroxamic acid and trichostatin A, fit into this structure with the hydroxamic moiety of the inhibitor binding to the zinc. HDAC inhibitors cause acetylated histones to accumulate in both tumor and normal tissues, and this accumulation can be used as a marker of the biologic activity of the HDAC inhibitors. Hydroxamic acid-based HPCs act selectively to inhibit tumor cell growth at levels that have little or no toxicity for normal cells. These compounds also act selectively on gene expression, altering the expression of only about 2% of the genes expressed in cultured tumor cells. In general, chromatin fractions enriched in actively transcribed genes are also enriched in highly acetylated core histones, whereas silent genes are associated with nucleosomes with a low level of acetylation. However, HDACs can also acetylate proteins other than histones in nucleosomes. The role that these other targets play in the induction of cell growth arrest, differentiation, and/or apoptotic cell death has not been determined. Our working hypothesis is that inhibition of HDAC activity leads to the modulation of expression of a specific set of genes that, in turn, result in growth arrest, differentiation, and/or apoptotic cell death. The hydroxamic acid-based HPCs are potentially effective agents for cancer therapy and, possibly, cancer chemoprevention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.