Abstract

Simple SummaryGlioblastoma (GBM) is considered the deadliest brain tumor; with patients displaying a high incidence of relapse and a 3-year survival of only 3–5%. For these reasons, investigation of the molecular basis of the disease could provide novel targets for therapy and improve patient prognoses. Based on our previous data, demonstrating that high levels of the transcription factor TCF4 (TCF7L2) sustain the aggressiveness and the stem cell features of these tumors, in this study we tested the ability of the histone deacetylase inhibitors (HDI) Trichostatin-A and Vorinostat to suppress TCF4 levels. We demonstrated that HDI treatment impairs proliferation and viability of GBM cells. Moreover, molecular analysis of HDI effects disclosed their ability to counteract tumor cell motility by affecting the RhoA-GTPase and the interferon pathways, supporting their further characterization as potential anti-GBM agents.Despite being subjected to high-dose chemo and radiotherapy, glioblastoma (GBM) patients still encounter almost inevitable relapse, due to the capability of tumor cells to disseminate and invade normal brain tissues. Moreover, the presence of a cancer stem cell (CSC) subpopulation, already demonstrated to better resist and evade treatments, further frustrates potential therapeutic approaches. In this context, we previously demonstrated that GBM is characterized by a tightly-regulated balance between the β-catenin cofactors TCF1 and TCF4, with high levels of TCF4 responsible for sustaining CSC in these tumors; thus, supporting their aggressive features. Since histone deacetylase inhibitors (HDI) have been reported to strongly reduce TCF4 levels in colon cancer cells, we hypothesized that they could also exert a similar therapeutic action in GBM. Here, we treated primary GBM cultures with Trichostatin-A and Vorinostat, demonstrating their ability to strongly suppress the Wnt-dependent pathways; thus, promoting CSC differentiation and concomitantly impairing GBM cell viability and proliferation. More interestingly, analysis of their molecular effects suggested a prominent HDI action against GBM cell motility/migration, which we demonstrated to rely on the inhibition of the RhoA-GTPase and interferon intracellular cascades. Our results suggest HDI as potential therapeutic agents in GBM, through their action on multiple cancer hallmarks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.