Abstract

Background and Aim: It is demonstrated that dietary habits play a role in cardiovascular diseases. In stroke-prone spontaneously hypertensive rats (SHRsp), concomitant salt loading and a Japanese-style diet greatly accelerate hypertension and the appearance of cerebrovascular lesions by directly damaging arterial vessels. A number of studies have characterised medium and small vessel lesions in SHRsp, but little attention has been paid to the changes in the wall structure of large arteries induced by exposure to a salt-enriched diet. The aim of this study was to investigate the effects of a Japanese-style diet and salt loading on the thoracic aorta. Methods and Results: Two-month-old SHRsp were kept on a Japanese-style diet with 1% sodium chloride solution replacing tap water. Two months later, they were sacrificed and compared with age-matched or two-month-old control SHRsp kept on a standard diet and tap water in terms of the histomorphometry, ultrastructure and biochemical composition of the thoracic aorta. The vessel was consistently thicker in the four-month-old SHRsp (+20%, p<0.05 vs two-month-old rats) regardless of diet. The salt-loaded SHRsp showed a significant reduction in elastic fibre density (−20%, p<0.05 vs two-month-old rats) and an increase in the other matrix components (+50%), whereas the four-month-old controls showed preserved elastic fibres and a significant increase in the other matrix components (+65%, p<0.05 vs two-month-old rats). There was a considerable increase in the amounts of 4-OH-proline (+147%), 5-OH-lysine (+174%) and desmosines (+360%) in the four-month-old controls vs their two-month-old counterparts ( p<0.01), but not in the salt-loaded animals. Ultrastructural analysis revealed clear damage and accelerated aging in the thoracic aorta of the salt-loaded SHRsp. Conclusions: Salt loading and a Japanese-style diet destabilise thoracic aorta architecture in SHRsp after two months of treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.