Abstract

Nanofat and lipoconcentrate contain adipose-derived stem cells and growth factors, and have wide clinical applications in the regenerative field. This study aimed to investigate the microenvironmental changes associated with nanofat and lipoconcentrate. Conventional fat, nanofat, or lipoconcentrate (0.2mL each, n = 5 per group) were injected subcutaneously into the dorsal flanks of athymic nude mice. The graft weights were measured at postoperative week 4; the grafts and their overlying skin were used for histological analyses. Weights of the lipoconcentrate grafts were significantly greater than those of the conventional fat (p < 0.05) and nanofat (p < 0.01) grafts. There was no significant difference in inflammation, oil cysts, and fibrosis between the conventional fat and nanofat groups. Histological examination of the lipoconcentrate grafts showed less macrophage infiltration and the formation of fibrosis and oil cysts. Additionally, adipogenesis and angiogenesis were induced more in the lipoconcentrate grafts than in the nanofat grafts (p < 0.01). Lipoconcentrate and nanofat improved dermal thickness (p < 0.001 and p < 0.01, respectively, versus the baseline). Lipoconcentrate grafts had greater volume and shape retention than conventional fat and nanofat grafts. They had better histological structure and acted as scaffolds for adipogenesis and angiogenesis. Both products showed regenerative effects on dermal thickness; however, only lipoconcentrate grafts had the required volume and regenerative effects, allowing it to serve as a novel adipose-free grafting method for facial rejuvenation and contouring. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to Table of Contents or the online Instructions to Authors www.springer.com/00266 .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call