Abstract
This study presents a novel representation based on hierarchical histogram of local feature sequences for human interaction recognition. The authors’ method basically combines the power of discriminative sequence mining and histogram representation for the effective recognition of human interactions. Our framework involves extracting visual features from the videos first, and then mining sequences of the visual features that occur consequently in space and time. After the mining step, we represent each video with a histogram pyramid of such sequences. We also propose to use soft clustering in the visual word construction step, such that more information-rich histograms can be obtained. The authors’ experimental results on challenging human interaction recognition data sets indicate that the proposed algorithm performs on par with the state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.