Abstract
Human interaction is one of the most important characteristics of group social dynamics in meetings. In this paper, we propose an approach for capture, recognition, and visualization of human interactions. Unlike physical interactions (e.g., turn-taking and addressing), the human interactions considered here are incorporated with semantics, i.e., user intention or attitude toward a topic. We adopt a collaborative approach for capturing interactions by employing multiple sensors, such as video cameras, microphones, and motion sensors. A multimodal method is proposed for interaction recognition based on a variety of contexts, including head gestures, attention from others, speech tone, speaking time, interaction occasion (spontaneous or reactive), and information about the previous interaction. A support vector machines (SVM) classifier is used to classify human interaction based on these features. A graphical user interface called MMBrowser is presented for interaction visualization. Experimental results have shown the effectiveness of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.