Abstract
Chiral enantiomers, especially the enantiomers of chiral drugs often exhibit different pharmacological activity, metabolism and toxicity, thus it is of great research significance to scientifically and reasonably develop single chiral drugs with low toxicity and high efficiency. Among them, high performance liquid chromatographic techniques based on chiral stationary phases (CSPs) has become one of the most attractive methods used to evaluate the enantiomeric purity of single-enantiomers compound of pharmacological relevance. In this work, pillar[5]arene functionalized with L- and D-histidine, respectively, were modified on the surface of mesoporous silica as novel chiral stationary phases called L/DHis-BP5-Sil. Notably, L/D-histidine had the characteristics of low steric hindrance and easy derivatization. Although the π-π interaction of imidazole group was weaker than that of benzene ring, the benzene ring bonding imidazole-conjugated ring in the structure produced better enantioseparation effect. The results showed that L/DHis-BP5-Sil can separate a variety of complex structural enantiomers with excellent reproducibility, thermal stability and separation performance. Hence, the unique advantage of the highly selective separation of L/DHis-BP5-Sil provides new insights into the enantioseparation field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.