Abstract
Fragile X Syndrome (FXS) is a neurodevelopmental disorder that can cause impairments in spatial cognition and memory. The hippocampus is thought to support spatial cognition through the activity of place cells, neurons with spatial receptive fields. Coordinated firing of place cell populations is organized by different oscillatory patterns in the hippocampus during specific behavioral states. Theta rhythms organize place cell populations during awake exploration. Sharp wave-ripples organize place cell population reactivation during waking rest. Here, we examined the coordination of CA1 place cell populations during active behavior and subsequent rest in a rat model of FXS (Fmr1 knockout rats). While the organization of individual place cells by the theta rhythm was normal, the coordinated activation of sequences of place cells during individual theta cycles was impaired in Fmr1 knockout rats. Further, the subsequent replay of place cell sequences was impaired during waking rest following active exploration. Together, these results expand our understanding of how genetic modifications that model those observed in FXS affect hippocampal physiology and suggest a potential mechanism underlying impaired spatial cognition in FXS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.