Abstract

Cocaine addiction is a complex pathology inducing long-term neuroplastic changes that, in turn, contribute to maladaptive behaviors. This behavioral dysregulation is associated with transcriptional reprogramming in brain reward circuitry, although the mechanisms underlying this modulation remain poorly understood. The endogenous cannabinoid system may play a role in this process in that cannabinoid mechanisms modulate drug reward and contribute to cocaine-induced neural adaptations. In this study, we investigated whether cocaine self-administration induces long-term adaptations, including transcriptional modifications and associated epigenetic processes. We first examined endocannabinoid gene expression in reward-related brain regions of the rat following self-administered (0.33mg/kg intravenous, FR1, 10days) cocaine injections. Interestingly, we found increased Cnr1 expression in several structures, including prefrontal cortex, nucleus accumbens, dorsal striatum, hippocampus, habenula, amygdala, lateral hypothalamus, ventral tegmental area, and rostromedial tegmental nucleus, with most pronounced effects in the hippocampus. Endocannabinoid levels, measured by mass spectrometry, were also altered in this structure. Chromatin immunoprecipitation followed by qPCR in the hippocampus revealed that two activating histone marks, H3K4Me3 and H3K27Ac, were enriched at specific endocannabinoid genes following cocaine intake. Targeting CB1 receptors using chromosome conformation capture, we highlighted spatial chromatin re-organization in the hippocampus, as well as in the nucleus accumbens, suggesting that destabilization of the chromatin may contribute to neuronal responses to cocaine. Overall, our results highlight a key role for the hippocampus in cocaine-induced plasticity and broaden the understanding of neuronal alterations associated with endocannabinoid signaling. The latter suggests that epigenetic modifications contribute to maladaptive behaviors associated with chronic drug use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.