Abstract

The hippocampus is a critical brain region for the formation of declarative memories. While social memory had long been attributed to be a function of the hippocampus, it is only of late that the area CA2 of the hippocampus was demarcated as essential for social memory formation. In addition to this distinct role, CA2 possesses unique molecular, structural and physiological characteristics compared to the other CA regions-CA1 and CA3, and the dentate gyrus (DG). CA2 pyramidal neurons are positioned at a location between CA1 and CA3, receiving inputs from CA3 and DG, in addition to forming a powerful disynaptic circuit with direct input from the entorhinal cortical layer II neurons. CA2 also receives direct inputs from the hypothalamic regions and displays a unique expression pattern for receptors for neuromodulators. The location, inputs, and molecular signatures of the area CA2 point to the possibility that CA2 serves as a modulatory gateway that processes information from the entorhinal cortex and CA3, before relaying them onto CA1, the major output of the hippocampus. This review discusses recent findings regarding plasticity and neuromodulation in the CA2 region of the hippocampus, and how this may have the potential to influence plasticity in connecting circuits, and thereby memory and behaviour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call