Abstract

Filovirus-host interactions play important roles in all stages of the virus lifecycle. Here, we identify LATS1/2 kinases and YAP, key components of the Hippo pathway, as critical regulators of EBOV transcription and egress. Specifically, we find that when YAP is phosphorylated by LATS1/2, it localizes to the cytoplasm (Hippo “ON”) where it sequesters VP40 to prevent egress. In contrast, when the Hippo pathway is “OFF”, unphosphorylated YAP translocates to the nucleus where it transcriptionally activates host genes and promotes viral egress. Our data reveal that LATS2 indirectly modulates filoviral VP40-mediated egress through phosphorylation of AMOTp130, a positive regulator of viral egress, but more surprisingly that LATS1/2 kinases directly modulate EBOV transcription by phosphorylating VP30, an essential regulator of viral transcription. In sum, our findings highlight the potential to exploit the Hippo pathway/filovirus axis for the development of host-oriented countermeasures targeting EBOV and related filoviruses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.