Abstract

Gallium nitride (GaN) epitaxial films on sapphire (Al2O3) substrates have been grown using reactive magnetron sputter epitaxy with a liquid Ga target. Threading dislocations density (TDD) of sputtered GaN films was reduced by using an inserted high-quality aluminum nitride (AlN) buffer layer grown by reactive high power impulse magnetron sputtering (R-HiPIMS) in a gas mixture of Ar and N2. After optimizing the Ar/N2 pressure ratio and deposition power, a high-quality AlN film exhibiting a narrow full-width at half-maximum (FWHM) value of the double-crystal x-ray rocking curve (DCXRC) of the AlN(0002) peak of 0.086° was obtained by R-HiPIMS. The mechanism giving rise the observed quality improvement is attributed to the enhancement of kinetic energy of the adatoms in the deposition process when operated in a transition mode. With the inserted HiPIMS-AlN as a buffer layer for direct current magnetron sputtering (DCMS) GaN growth, the FWHM values of GaN(0002) and (10 1‾ 1) XRC decrease from 0.321° to 0.087° and from 0.596° to 0.562°, compared to the direct growth of GaN on sapphire, respectively. An order of magnitude reduction from 2.7 × 109 cm−2 to 2.0 × 108 cm−2 of screw-type TDD calculated from the FWHM of the XRC data using the inserted HiPIMS-AlN buffer layer demonstrates the improvement of crystal quality of GaN. The result of TDD reduction using the HiPIMS-AlN buffer was also verified by weak beam dark-field (WBDF) cross-sectional transmission electron microscopy (TEM).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call