Abstract

Recent studies demonstrate novel metamaterials featuring unique properties by combining origami-inspired designs with additive manufacturing. In particular, the use of flexural hinges endows distinct advantages towards miniaturization and fabrication; however, there are limited applications due to the limited loading and fatigue resistance of the hinges. In this study, we focus on testing and characterizing mechanical properties of flexural hinges so that our findings could have immediate applications in 3D-printed origami structures. We introduce an aramid fiber composite hinge and compare it to a single-material polyamide and a multimaterial photopolymer hinge. We investigate the impact of the materials and geometric design parameters on the load carrying capability and flexural properties. Furthermore, the fatigue behavior of the hinges is characterized, identifying the constitutive mechanisms. We consolidate all the data and findings to construct a comprehensive design parameter – property map, which serves as a guideline for optimizing hinge performance for a given set of required properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.