Abstract
With explosive growth of Android malware and due to the severity of its damages to smart phone users, the detection of Android malware has become increasingly important in cybersecurity. The increasing sophistication of Android malware calls for new defensive techniques that are capable against novel threats and harder to evade. In this paper, to detect Android malware, instead of using Application Programming Interface (API) calls only, we further analyze the different relationships between them and create higher-level semantics which require more effort for attackers to evade the detection. We represent the Android applications (apps), related APIs, and their rich relationships as a structured heterogeneous information network (HIN). Then we use a meta-path based approach to characterize the semantic relatedness of apps and APIs. We use each meta-path to formulate a similarity measure over Android apps, and aggregate different similarities using multi-kernel learning. Then each meta-path is automatically weighted by the learning algorithm to make predictions. To the best of our knowledge, this is the first work to use structured HIN for Android malware detection. Comprehensive experiments on real sample collections from Comodo Cloud Security Center are conducted to compare various malware detection approaches. Promising experimental results demonstrate that our developed system HinDroid outperforms other alternative Android malware detection techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.