Abstract

Rodent hindlimb unloading (HU) by tail-suspension is a model to investigate disuse-induced bone loss in vivo. Previously, we have shown that osteopontin (OPN, also known as Spp1) is required for unloading-induced bone loss. However, how unloading affects OPN expression in the body is not fully understood. Here, we examined OPN expression in peripheral blood of mice subjected to HU. Real-time RT-PCR analysis indicated that OPN expression is increased in circulating peripheral blood cells. This HU-induced increase in OPN mRNA expression was specific in circulating peripheral blood cells, as OPN was not increased in the blood cells in bone marrow. HU-induced enhancement in OPN expression in peripheral blood cells was associated with an increase in the fraction of monocyte/macrophage lineage cells in the peripheral blood. In contrast, HU decreased the fraction size of B-lymphocytes in the peripheral blood. We further examined if B-lymphogenesis is affected in the mice deficient for osteopontin subjected to HU. In bone marrow, HU decreased the population of the B-lymphocyte lineage cells significantly, whereas it did not alter the population of monocyte/macrophage lineage cells. HU also increased the cells in T-lymphocyte lineage in bone marrow. Interestingly, these changes were observed similarly both in OPN-deficient and wild-type mice. These results indicate for the first time that HU increases OPN expression in circulating cells and suppresses bone marrow B-lymphogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.