Abstract
Secondary settling tanks (SSTs) are the most hydraulically sensitive unit operations in activated sludge water resource recovery facilities (WRRF). Mathematical models for predicting activated sludge solids settling velocity include parameters that show irreducible epistemic uncertainty. Therefore, reliable and periodic calibration of the settling velocity model is key for predicting activated sludge process capacity, thus averting possible failures under wet-weather flow- and filamentous bulking conditions. The two main knowledge gaps addressed here are: (1) Do constitutive functions for hindered and compression settling exist, for which all velocity parameters can be uniquely estimated? (2) What is the optimum sensor data requirement of developing reliable settling velocity functions? Innovative settling column sensor and full-scale data were used to identify and validate amended Vesilind function for hindered settling and a new exponential function for compression settling velocity using one-dimensional and computational fluid dynamics simulations. Results indicate practical model identifiability under well-settling and filamentous bulking conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.