Abstract

AbstractRigorous results on Hill Stability for the classical N-body problem are in general unknown for N ≥ 3, due to the complex interactions that may occur between bodies and the many different outcomes which may occur. However, the addition of finite density for the bodies along with a rigidity assumption on their mass distribution allows for Hill stability to be easily established. In this note we generalize results on Hill stability developed for the Full 3-body problem and show that it can be applied to the Full N-body problem. Further, we find that Hill Stability concepts can be applied to identify types of configurations which can escape and types which cannot as a function of the system energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.