Abstract
The dynamical stability of a triple system composed of a binary or planetary system and a bound third body moving on a orbit inclined to the system is discussed in terms of Hill stability for the full three-body problem. The situation arises in the determination of stability of triple star systems against disruption and component exchange and the determination of stability of planetary systems against disruption, component exchange or capture. It is found that increasing the inclination of the third body decreases the Hill regions of stability. Increasing the eccentricity of the binary also produces similar effects. These type of changes make exchange or disruption of the component masses more likely. Increasing the eccentricity of the third body initially increases the stability of the system then decreases stability as the eccentricity reaches higher values. The Hill stability criterion is applied to extrasolar planetary systems to determine the critical distances at which planets of the same mass as the observed extrasolar planet moving on a circular orbit could remain on a stable orbit. It was found that these distances were sufficiently short suggesting that the presence of further as yet unobserved stable extrasolar planets in observed systems was very likely.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.